Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Intervalo de año de publicación
1.
J Exp Bot ; 75(5): 1390-1406, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-37975812

RESUMEN

Age affects the production of secondary metabolites, but how developmental cues regulate secondary metabolism remains poorly understood. The achiote tree (Bixa orellana L.) is a source of bixin, an apocarotenoid used in diverse industries worldwide. Understanding how age-dependent mechanisms control bixin biosynthesis is of great interest for plant biology and for economic reasons. Here we overexpressed miRNA156 (miR156) in B. orellana to comprehensively study the effects of the miR156-SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) module on age-dependent bixin biosynthesis in leaves. Overexpression of miR156 in annatto plants (miR156ox) reduced BoSPL transcript levels, impacted leaf ontogeny, lessened bixin production, and increased abscisic acid levels. Modulation of expression of BoCCD4-4 and BoCCD1, key genes in carotenoid biosynthesis, was associated with diverting the carbon flux from bixin to abscisic acid in miR156ox leaves. Proteomic analyses revealed an overall low accumulation of most secondary metabolite-related enzymes in miR156ox leaves, suggesting that miR156-targeted BoSPLs may be required to activate several secondary metabolic pathways. Our findings suggest that the conserved BomiR156-BoSPL module is deployed to regulate leaf dynamics of bixin biosynthesis, and may create novel opportunities to fine-tune bixin output in B. orellana breeding programs.


Asunto(s)
Ácido Abscísico , Bixaceae , Extractos Vegetales , Bixaceae/genética , Bixaceae/metabolismo , Ácido Abscísico/metabolismo , Proteómica , Fitomejoramiento , Carotenoides/metabolismo
2.
Protoplasma ; 260(4): 1207-1219, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36787048

RESUMEN

Bixin is a commercially valuable apocarotenoid pigment found in the seed aril of Bixa orellana. The dynamics and regulation of its biosynthesis and accumulation during seed development remain largely unknown. Here, we combined chemical, anatomical, and transcriptomic data to provide stage-specific resolution of the cellular and molecular events occurring during B. orellana seed development. Seeds at five developmental stages (S1-S5) were used for analysis of bixin content and seed anatomy, and three of them (S1, S3, and S4) were selected for Illumina HiSeq sequencing. Bixin accumulated in large quantities in seeds compared with other tissues analyzed, particularly during the S2 stage, peaking at the S4 stage, and then decreasing slightly in the S5 stage. Anatomical analysis revealed that bixin accumulated in the large central vacuole of specialized cells, which were scattered throughout the developing mesotesta at the S2 stage, but enlarged progressively at later stages, until they occupied most of the parenchyma in the aril. A total of 13 million reads were generated and assembled into 73,381 protein-encoding contigs, from which 312 were identified as containing 1-deoxy-D-xylulose-5-phosphate/2-C-methyl-D-erythritol-4-phosphate (DOXP/MEP), carotenoid, and bixin pathways genes. Differential transcriptome expression analysis of these genes revealed that 50 of them were sequentially and differentially expressed through the seed developmental stages analyzed, including seven carotenoid cleavage dioxygenases, eight aldehyde dehydrogenases, and 22 methyltransferases. Taken together, these results show that bixin synthesis and accumulation in seeds of B. orellana are a developmentally regulated process involving the coordinated expression of DOXP/MEP, carotenoid, and bixin biosynthesis genes.


Asunto(s)
Bixaceae , Carotenoides , Bixaceae/genética , Bixaceae/metabolismo , RNA-Seq , Carotenoides/metabolismo , Semillas
3.
Plant Physiol ; 188(3): 1469-1482, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-34919714

RESUMEN

Annatto (Bixa orellana) is a perennial shrub native to the Americas, and bixin, derived from its seeds, is a methoxylated apocarotenoid used as a food and cosmetic colorant. Two previous reports claimed to have isolated the carotenoid cleavage dioxygenase (CCD) responsible for the production of the putative precursor of bixin, the C24 apocarotenal bixin dialdehyde. We re-assessed the activity of six Bixa CCDs and found that none of them produced substantial amounts of bixin dialdehyde in Escherichia coli. Unexpectedly, BoCCD4-3 cleaved different carotenoids (lycopene, ß-carotene, and zeaxanthin) to yield the C20 apocarotenal crocetin dialdehyde, the known precursor of crocins, which are glycosylated apocarotenoids accumulated in saffron stigmas. BoCCD4-3 lacks a recognizable transit peptide but localized to plastids, the main site of carotenoid accumulation in plant cells. Expression of BoCCD4-3 in Nicotiana benthamiana leaves (transient expression), tobacco (Nicotiana tabacum) leaves (chloroplast transformation, under the control of a synthetic riboswitch), and in conjunction with a saffron crocetin glycosyl transferase, in tomato (Solanum lycopersicum) fruits (nuclear transformation) led to high levels of crocin accumulation, reaching the highest levels (>100 µg/g dry weight) in tomato fruits, which also showed a crocin profile similar to that found in saffron, with highly glycosylated crocins as major compounds. Thus, while the bixin biosynthesis pathway remains unresolved, BoCCD4-3 can be used for the metabolic engineering of crocins in a wide range of different plant tissues.


Asunto(s)
Bixaceae/genética , Bixaceae/metabolismo , Carotenoides/metabolismo , Dioxigenasas/genética , Dioxigenasas/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Redes y Vías Metabólicas
4.
Sheng Wu Gong Cheng Xue Bao ; 37(6): 1986-1997, 2021 Jun 25.
Artículo en Chino | MEDLINE | ID: mdl-34227289

RESUMEN

Since synthetic pigments are potentially harmful to human health, natural ones such as bixin, one of the carotenoids, are favored. As the second widely used natural pigment in the world, there is significant interest in the biosynthetic pathway of bixin which has not been fully elucidated. This review summarizes the chemical properties, extraction methods, biosynthetic pathway and application of bixin. In addition, we compared the difference between traditional extraction methods and new extraction techniques. Moreover, we described the genes involved in the biosynthetic pathway of bixin and the effects of abiotic stress on the biosynthesis of bixin, and discussed the application of bixin in food, pharmaceutical and chemical industries. However, the researches on bixin biosynthesis pathway are mostly carried out at the transcriptome level and most of the gene functions have not been elucidated. Therefore, we propose to characterize the entire bixin biosynthetic pathway using techniques of genomics, bioinformatics, and phytochemistry. This will help facilitate the synthetic biology research of bixin and development of bixin into new drugs.


Asunto(s)
Bixaceae , Carotenoides , Bixaceae/genética , Humanos , Pigmentación , Transcriptoma
5.
Chinese Journal of Biotechnology ; (12): 1986-1997, 2021.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-887776

RESUMEN

Since synthetic pigments are potentially harmful to human health, natural ones such as bixin, one of the carotenoids, are favored. As the second widely used natural pigment in the world, there is significant interest in the biosynthetic pathway of bixin which has not been fully elucidated. This review summarizes the chemical properties, extraction methods, biosynthetic pathway and application of bixin. In addition, we compared the difference between traditional extraction methods and new extraction techniques. Moreover, we described the genes involved in the biosynthetic pathway of bixin and the effects of abiotic stress on the biosynthesis of bixin, and discussed the application of bixin in food, pharmaceutical and chemical industries. However, the researches on bixin biosynthesis pathway are mostly carried out at the transcriptome level and most of the gene functions have not been elucidated. Therefore, we propose to characterize the entire bixin biosynthetic pathway using techniques of genomics, bioinformatics, and phytochemistry. This will help facilitate the synthetic biology research of bixin and development of bixin into new drugs.


Asunto(s)
Humanos , Bixaceae/genética , Carotenoides , Pigmentación , Transcriptoma
6.
BMC Genomics ; 21(1): 544, 2020 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-32762642

RESUMEN

BACKGROUND: Full chloroplast genomes provide high resolution taxonomic discrimination between closely related plant species and are quickly replacing single and multi-locus barcoding regions as reference materials of choice for DNA based taxonomic annotation of plants. Bixa orellana, commonly known as "achiote" and "annatto" is a plant used for both human and animal foods and was thus identified for full chloroplast sequencing for the Center for Veterinary Medicine (CVM) Complete Chloroplast Animal Feed database. This work was conducted in collaboration with the Instituto de Medicina Tradicional (IMET) in Iquitos, Peru. There is a wide range of color variation in pods of Bixa orellana for which genetic loci that distinguish phenotypes have not yet been identified. Here we apply whole chloroplast genome sequencing of "red" and "yellow" individuals of Bixa orellana to provide high quality reference genomes to support kmer database development for use identifying this plant from complex mixtures using shotgun data. Additionally, we describe chloroplast gene content, synteny and phylogeny, and identify an indel and snp that may be associated with seed pod color. RESULTS: Fully assembled chloroplast genomes were produced for both red and yellow Bixa orellana accessions (158,918 and 158,823 bp respectively). Synteny and gene content was identical to the only other previously reported full chloroplast genome of Bixa orellana (NC_041550). We observed a 17 base pair deletion at position 58,399-58,415 in both accessions, relative to NC_041550 and a 6 bp deletion at position 75,531-75,526 and a snp at position 86,493 in red Bixa orellana. CONCLUSIONS: Our data provide high quality reference genomes of individuals of red and yellow Bixa orellana to support kmer based identity markers for use with shotgun sequencing approaches for rapid, precise identification of Bixa orellana from complex mixtures. Kmer based phylogeny of full chloroplast genomes supports monophylly of Bixaceae consistent with alignment based approaches. A potentially discriminatory indel and snp were identified that may be correlated with the red phenotype.


Asunto(s)
Bixaceae , Genoma del Cloroplasto , Animales , Bixaceae/genética , Humanos , Filogenia , Extractos Vegetales
7.
Funct Integr Genomics ; 19(4): 565-574, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30694406

RESUMEN

The effect of salt stress on pigment synthesis and antioxidant enzyme activity as well as in the genes involved in the biosynthetic pathway of bixin was studied. The 14-day germinated seedlings of Bixa orellana were induced into the various NaCl concentration (0, 25, 50, 75, 100 mM). After 45 days, leaves were taken for pigment analysis, antioxidant assays, and gene expression analysis to study the response of salt stress. The pigment content such as chlorophyll level was increased upon salt stress with a reduction in total carotenoid clearly indicating the adaptability of plants towards the stressed state. The level of ß-carotene was increased in the highest concentration of salt stress treatment. The secondary metabolites such as bixin and abscisic acid (ABA) content were also high in elevated concentration of salt-treated seedling than control. The antioxidant enzyme activity was increased with the highest dose of salt stress suggesting the antioxidant enzymes to protect the plant from the deleterious effects. The mRNA transcript gene of the carotenoid biosynthetic pathway such as phytoene synthase (PSY), 1-deoxyxylulose-5-phosphate synthase (DXS), phytoene desaturase (PDS), beta-lycopene cyclase (LCY-ß), epsilon lycopene cyclase (LCY-ε), carboxyl methyl transferase (CMT), aldehyde dehydrogenase (ADH), lycopene cleavage dioxygenase (LCD), and carotenoid cleavage dioxygenase (CCD) showed differential expression pattern under salt stress. In addendum, we studied the co-expression network analysis of gene to assess the co-related genes associated in the biosynthesis pathway of carotenoid. From the co-expression analysis result showed, the LCY, PDS, and PSY genes were closely correlated with other genes. These finding may provide insight to the plants to exist in the stress condition and to improve the industrially important pigment production.


Asunto(s)
Bixaceae/metabolismo , Carotenoides/biosíntesis , Estrés Salino , Transcriptoma , Ácido Abscísico/metabolismo , Bixaceae/genética , Carotenoides/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
8.
Planta ; 249(2): 563-582, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30310983

RESUMEN

MAIN CONCLUSION: The plastome of B. orellana reveals specific evolutionary features, unique RNA editing sites, molecular markers and the position of Bixaceae within Malvales. Annatto (Bixa orellana L.) is a native species of tropical Americas with center of origin in Brazilian Amazonia. Its seeds accumulate the apocarotenoids, bixin and norbixin, which are only found in high content in this species. The seeds of B. orellana are commercially valued by the food industry because its dyes replace synthetic ones from the market due to potential carcinogenic risks. The increasing consumption of B. orellana seeds for dye extraction makes necessary the increase of productivity, which is possible accessing the genetic basis and searching for elite genotypes. The identification and characterization of molecular markers are essential to analyse the genetic diversity of natural populations and to establish suitable strategies for conservation, domestication, germplasm characterization and genetic breeding. Therefore, we sequenced and characterized in detail the plastome of B. orellana. The plastome of B. orellana is a circular DNA molecule of 159,708 bp with a typical quadripartite structure and 112 unique genes. Additionally, a total of 312 SSR loci were identified in the plastome of B. orellana. Moreover, we predicted in 23 genes a total of 57 RNA-editing sites of which 11 are unique for B. orellana. Furthermore, our plastid phylogenomic analyses, using the plastome sequences available in the plastid database belonging to species of order Malvales, indicate a closed relationship between Bixaceae and Malvaceae, which formed a sister group to Thymelaeaceae. Finally, our study provided useful data to be employed in several genetic and biotechnological approaches in B. orellana and related species of the family Bixaceae.


Asunto(s)
Bixaceae/genética , Plastidios/genética , Bixaceae/metabolismo , Colorantes/metabolismo , Genes de Plantas/genética , Malvaceae/genética , Filogenia , Edición de ARN/genética , Análisis de Secuencia de ADN , Thymelaeaceae/genética
9.
PLoS One ; 13(6): e0198593, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29874280

RESUMEN

Annatto (Bixa orellana L.) is a tropical American crop, commercially valuable due to its application in the food and cosmetics industries as a natural dye. The wild ancestor of cultivated annatto is B. orellana var. urucurana. Although never cultivated, this variety occurs in open forests and anthropogenic landscapes, and is always associated with riparian environments. In this study, we evaluated the genetic diversity and structure of B. orellana var. urucurana populations in Brazilian Amazonia using 16 microsatellite loci. We used Ecological Niche Modeling (ENM) to characterize the potential geographical range of this variety in northern South America. We analyzed 170 samples from 10 municipalities in the states of Rondônia, Pará and Roraima. A total of 194 alleles was observed, with an average of 12.1 alleles per locus. Higher levels of expected (HE) than observed (HO) heterozygosities were found for all populations. Bayesian analysis, Neighbor-Joining dendrograms and PCAs suggest the existence of three strongly structured groups of populations. A strong and positive correlation between genetic and geographic distances was found, suggesting that genetic differentiation might be caused by geographic isolation. From species distribution modelling, we detected that South Rondônia, Madre di Dios River basin, Llanos de Mojos, Llanos de Orinoco and eastern Ecuador are highly suitable areas for wild annatto to occur, providing additional targets for future exploration and conservation. Climatic adaptation analyses revealed strong differentiation among populations, suggesting that precipitation plays a key role in wild annatto's current and potential distribution patterns.


Asunto(s)
Aclimatación/genética , Bixaceae/genética , Carotenoides/genética , Conservación de los Recursos Naturales , Variación Genética/genética , Repeticiones de Microsatélite/genética , Extractos Vegetales/genética , Brasil , Bosques
10.
Planta ; 248(2): 267-277, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29748818

RESUMEN

MAIN CONCLUSION: Genetic transformation allows for greater bixin or norbixin production in achiote. Knowledge of genes that control the biosynthesis of these important secondary metabolites will allow for targeted amplification in transgenic plants. Annatto is a natural dye or coloring agent derived from the seeds, or their arils, of achiote (Bixa orellana L.), and is commercially known as E160b. The main active component of annatto dye is water-insoluble bixin, although water-soluble norbixin also has commercial applications. Relative to other antioxidants, bixin is light- and temperature stable and is thus safe for human consumption. Bixin is, therefore, widely applied as a dye and as an antioxidant in the medico-pharmaceutical, food, cosmetic, and dye industries. Even though bixin has also been isolated from leaves and bark, yield is lower than from seeds. More biotechnology-based research of this industrial and medicinal plant is needed. Building on provisional genetic transformation studies, it would be advantageous to transform genes that could result in greater bixin or norbixin production. Reliable protocols for the extraction of bixin and norbixin, as well as deeper knowledge of the genes that control the biosynthesis of these important secondary metabolites will allow for targeted amplification in transgenic plants.


Asunto(s)
Antioxidantes/metabolismo , Biotecnología , Bixaceae/genética , Carotenoides/metabolismo , Colorantes de Alimentos/metabolismo , Bixaceae/química , Bixaceae/metabolismo , Bixaceae/fisiología , Cruzamiento , Humanos , Extractos Vegetales/metabolismo , Plantas Medicinales , Reproducción , Semillas/química , Semillas/genética , Semillas/fisiología , Transformación Genética
11.
Appl Biochem Biotechnol ; 179(5): 697-714, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26922728

RESUMEN

Carotenoids are metabolized to apocarotenoids through the pathway catalysed by carotenoid cleavage oxygenases (CCOs). The apocarotenoids are economically important as it is known to have therapeutic as well as industrial applications. For instance, bixin from Bixa orellana and crocin from Crocus sativus are commercially used as a food colourant and cosmetics since prehistoric time. In our present study, CCD4a gene has been identified and isolated from leaves of B. orellana for the first time and named as BoCCD4a; phylogenetic analysis was carried out using CLUSTAL W. From sequence analysis, BoCCD4a contains two exons and one intron, which was compared with the selected AtCCD4, RdCCD4, GmCCD4 and CmCCD4a gene. Further, the BoCCD4a gene was cloned into pCAMBIA 1301, transformed into Agrobacterium tumefaciens EHA105 strain and subsequently transferred into hypocotyledons and callus of B. orellana by agro-infection. Selection of stable transformation was screened on the basis of PCR detection by using GUS and hptII specific primer, which was followed by histochemical characterization. The percent transient GUS expression in hypocotyledons and callus was 84.4 and 80 %, respectively. The expression of BoCCD4a gene in B. orellana was confirmed through RT-PCR analysis. From our results, the sequence analysis of BoCCD4a gene of B. orellana was closely related to the CsCCD4 gene of C. sativus, which suggests this gene may have a role in various processes such as fragrance, insect attractant and pollination.


Asunto(s)
Proteínas de Arabidopsis/genética , Carotenoides/metabolismo , Dioxigenasas/genética , Oxigenasas/genética , Filogenia , Agrobacterium/genética , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Bixaceae/enzimología , Bixaceae/genética , Carotenoides/genética , Crocus/enzimología , Crocus/genética , Dioxigenasas/metabolismo , Oxigenasas/metabolismo , Transformación Genética
12.
BMC Genomics ; 17: 29, 2016 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-26732698

RESUMEN

BACKGROUND: Harmful algal blooms (HABs) caused by the dinoflagellate Cochlodinium polykrikoides lead to severe environmental impacts in oceans worldwide followed by huge economic losses. Algicide agent copper sulfate (CuSO4) is regard as an economical and effective agent for HABs mitigation; its biochemical and physiological effects were revealed in C. polykrikoides. However, molecular mechanisms of CuSO4 effect on the C. polykrikoides, even other HAB species, have not been investigated. The present study investigated the transcriptional response of C. polykrikoides against CuSO4 treatments, with the aim of providing certain molecular mechanism of CuSO4 effect on the C. polykrikoides blooms. RESULTS: RNA-seq generated 173 million reads, which were further assembled to 191,212 contigs. 43.3 %, 33.9 %, and 15.6 % of contigs were annotated with NCBI NR, GO, and KEGG database, respectively. Transcriptomic analysis revealed 20.6 % differential expressed contigs, which grouped into 8 clusters according to K-means clustering analysis, responding to CuSO4; 848 contigs were up-regulated and 746 contigs were down-regulated more than 2-fold changes from 12 h to 48 h exposure. KEGG pathway analysis of eukaryotic homologous genes revealed the differentially expressed genes (DEGs) were involved in diverse pathway; amongst, the genes involved in the translation, spliceosome, and/or signal transduction genes were highly regulated. Most of photosystem related genes were down-regulated and most of mitochondria related genes were up-regulated. In addition, the genes involved in the copper ion binding or transporting and antioxidant systems were identified. Measurement of chlorophyll fluorescence showed that photosynthesis was significantly inhibited by CuSO4 exposure. CONCLUSIONS: This study reported the first transcriptome of the C. polykrikoides. The widely differential expressed photosystem genes suggested photosynthetic machinery were severely affected, and may further contribute to the cell death. Furthermore, gene translation and transcription processes may be disrupted, inhibiting cell growth and proliferation, and possibly accelerating cell death. However, antioxidant systems resistant to CuSO4 caused stress; mitochondrion may compensate for photosynthesis efficiency decreasing caused energy deficiency. In addition, various signal transduction pathways may be involved in the CuSO4 induced regulation network in the C. polykrikoides. These data provide the potential transcriptomic mechanism to explain the algicide CuSO4 effect on the harmful dinoflagellate C. polykrikoides.


Asunto(s)
Bixaceae/genética , Sulfato de Cobre/farmacología , Genoma , Transcriptoma/efectos de los fármacos , Antioxidantes/farmacología , Bixaceae/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Floraciones de Algas Nocivas/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
13.
BMC Genomics ; 16: 877, 2015 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-26511010

RESUMEN

BACKGROUND: Bixin or annatto is a commercially important natural orange-red pigment derived from lycopene that is produced and stored in seeds of Bixa orellana L. An enzymatic pathway for bixin biosynthesis was inferred from homology of putative proteins encoded by differentially expressed seed cDNAs. Some activities were later validated in a heterologous system. Nevertheless, much of the pathway remains to be clarified. For example, it is essential to identify the methylerythritol phosphate (MEP) and carotenoid pathways genes. RESULTS: In order to investigate the MEP, carotenoid, and bixin pathways genes, total RNA from young leaves and two different developmental stages of seeds from B. orellana were used for the construction of indexed mRNA libraries, sequenced on the Illumina HiSeq 2500 platform and assembled de novo using Velvet, CLC Genomics Workbench and CAP3 software. A total of 52,549 contigs were obtained with average length of 1,924 bp. Two phylogenetic analyses of inferred proteins, in one case encoded by thirteen general, single-copy cDNAs, in the other from carotenoid and MEP cDNAs, indicated that B. orellana is closely related to sister Malvales species cacao and cotton. Using homology, we identified 7 and 14 core gene products from the MEP and carotenoid pathways, respectively. Surprisingly, previously defined bixin pathway cDNAs were not present in our transcriptome. Here we propose a new set of gene products involved in bixin pathway. CONCLUSION: The identification and qRT-PCR quantification of cDNAs involved in annatto production suggest a hypothetical model for bixin biosynthesis that involve coordinated activation of some MEP, carotenoid and bixin pathway genes. These findings provide a better understanding of the mechanisms regulating these pathways and will facilitate the genetic improvement of B. orellana.


Asunto(s)
Bixaceae/genética , Bixaceae/metabolismo , Carotenoides/biosíntesis , Eritritol/sangre , Datos de Secuencia Molecular , Semillas/genética , Semillas/metabolismo
14.
Genet Mol Res ; 13(4): 9097-102, 2014 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-25366801

RESUMEN

Annatto (Bixa orellana) is a plant native from the American continental tropical zone. The seeds are used to produce a carotenoid-based yellow to orange food coloring. Microsatellite markers were developed for the Brazilian native species Bixa orellana to describe its genetic diversity and structure as well as to support conservation studies. Twenty-five microsatellite loci were isolated and characterized using an enriched genomic library. Ten loci were polymorphic in the 50 accessions sampled in this study, while 15 were considered monomorphic. The mean number of alleles per locus was 3.8, ranging from 2 to 6 alleles per locus. Mean values for the observed and expected heterozygosities were 0.541 (ranging from 0 to 0.658) and 0.639 (ranging from 0.422 to 0.787), respectively. All markers described in this study will be useful in further studies evaluating the genetic diversity, population dynamics, and conservation genetics of Bixa orellana.


Asunto(s)
Bixaceae/química , Bixaceae/genética , Carotenoides/metabolismo , Colorantes/metabolismo , Repeticiones de Microsatélite/genética , Alelos , Bixaceae/clasificación , ADN de Plantas/química , ADN de Plantas/genética , Frecuencia de los Genes , Biblioteca Genómica , Genotipo , Datos de Secuencia Molecular , Polimorfismo Genético , Análisis de Secuencia de ADN
15.
J Exp Bot ; 62(15): 5385-95, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21813796

RESUMEN

Carotenoid cleavage dioxygenases (CCDs) are a class of enzymes involved in the biosynthesis of a broad diversity of secondary metabolites known as apocarotenoids. In plants, CCDs are part of a genetic family with members which cleave specific double bonds of carotenoid molecules. CCDs are involved in the production of diverse and important metabolites such as vitamin A and abscisic acid (ABA). Bixa orellana L. is the main source of the natural pigment annatto or bixin, an apocarotenoid accumulated in large quantities in its seeds. Bixin biosynthesis has been studied and the involvement of a CCD has been confirmed in vitro. However, the CCD genes involved in the biosynthesis of the wide variety of apocarotenoids found in this plant have not been well documented. In this study, a new CCD1 gene member (BoCCD1) was identified and its expression was charaterized in different plant tissues of B. orellana plantlets and adult plants. The BoCCD1 sequence showed high homology with plant CCD1s involved mainly in the cleavage of carotenoids in several sites to generate multiple apocarotenoid products. Here, the expression profiles of the BoCCD1 gene were analysed and discussed in relation to total carotenoids and other important apocarotenoids such as bixin.


Asunto(s)
Bixaceae/enzimología , Dioxigenasas/metabolismo , Proteínas de Plantas/metabolismo , Bixaceae/genética , Bixaceae/metabolismo , Carotenoides/metabolismo , Dioxigenasas/genética , Proteínas de Plantas/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
16.
Mol Biol Rep ; 38(2): 1329-40, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20563648

RESUMEN

The tropical tree Bixa orellana L. produces a range of secondary metabolites which biochemical and molecular biosynthesis basis are not well understood. In this work we have characterized a set of ESTs from a non-normalized cDNA library of B. orellana seeds to obtain information about the main developmental and metabolic processes taking place in developing seeds and their associated genes. After sequencing a set of randomly selected clones, most of the sequences were assigned with putative functions based on similarity, GO annotations and protein domains. The most abundant transcripts encoded proteins associated with cell wall (prolyl 4-hydroxylase), fatty acid (acyl carrier protein), and hormone/flavonoid (2OG-Fe oxygenase) synthesis, germination (MADS FLC-like protein) and embryo development (AP2/ERF transcription factor) regulation, photosynthesis (chlorophyll a-b binding protein), cell elongation (MAP65-1a), and stress responses (metallothionein- and thaumatin-like proteins). Enzymes were assigned to 16 different metabolic pathways related to both primary and secondary metabolisms. Characterization of two candidate genes of the bixin biosynthetic pathway, BoCCD and BoOMT, showed that they belong, respectively, to the carotenoid-cleavage dioxygenase 4 (CCD4) and caffeic acid O-methyltransferase (COMT) families, and are up-regulated during seed development. It indicates their involvement in the synthesis of this commercially important carotenoid pigment in seeds of B. orellana. Most of the genes identified here are the first representatives of their gene families in B. orellana.


Asunto(s)
Bixaceae/genética , Dioxigenasas/genética , Etiquetas de Secuencia Expresada , Metiltransferasas/genética , Semillas/metabolismo , Biblioteca de Genes , Genes de Plantas , Modelos Genéticos , Familia de Multigenes , Filogenia , Proteínas de Plantas/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN , Factores de Tiempo
17.
Mol Biotechnol ; 42(1): 84-90, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19107604

RESUMEN

A reliable protocol is described for isolation of large full-length cDNA from Bixa orellana mature tissues containing large quantities of pigments, phenols, and polysaccharides. This protocol involves the optimization of a commercial RNA extraction protocol in combination with a long distance reverse transcript PCR protocol. The principal advantages of this protocol are its high RNA yield and quality. The resulting RNA is suitable for RNA expression evaluation and production of large, full-length cDNA. This is the first time RNA has been isolated from all mature tissues in the tropical perennial plant B. orellana and has been proved viable for downstream applications, especially important for molecular biology studies on this economically important pigment-producing plant.


Asunto(s)
Bixaceae/genética , Técnicas de Amplificación de Ácido Nucleico/métodos , Componentes Aéreos de las Plantas/química , ARN de Planta/aislamiento & purificación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Bixaceae/química , Carotenoides/análisis , Carotenoides/química , ADN Complementario/síntesis química , Electroforesis en Gel de Agar , Flavonoides/análisis , Flavonoides/química , Fenoles/análisis , Fenoles/química , Componentes Aéreos de las Plantas/genética , Polifenoles , Polisacáridos/análisis , Polisacáridos/química , ARN de Planta/química
18.
Mol Biotechnol ; 37(3): 220-4, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17952668

RESUMEN

The tropical plant Bixa orellana L. (annatto) produces an array of natural products, including the pigment bixin used in the food and cosmetics industries. In order to understand the biochemical and molecular basis of the biosynthesis of these natural products, a reliable method for isolating high yields of high-quality RNA is required. Here we described a successful and reproducible method for isolation and purification of high-quantity and high-quality RNA from different tissues of annatto. This protocol overcomes the usual problems associated with large amounts of polyphenols, polysaccharides, pigments, and other secondary metabolites that are not easily removed by conventional extraction procedures. Furthermore, the proposed protocol can be easily carried out in any laboratory and it could also be extended to isolate RNA from other plant species showing similar abundance of compounds that interfere with RNA extractions. The yield and quality of the RNA were monitored by spectrophotometric analysis, separation on agarose gel, Reverse Transcription-Polymerase Chain Reaction (RT-PCR), and construction of a cDNA library.


Asunto(s)
Bixaceae/genética , Carotenoides/metabolismo , Flavonoides/metabolismo , Fenoles/metabolismo , Extractos Vegetales/metabolismo , Estructuras de las Plantas/química , Polisacáridos/metabolismo , ARN de Planta/aislamiento & purificación , Bixaceae/química , Bixaceae/metabolismo , Clonación Molecular , Biblioteca de Genes , Pigmentos Biológicos/metabolismo , Extractos Vegetales/química , Extractos Vegetales/genética , Estructuras de las Plantas/genética , Estructuras de las Plantas/metabolismo , Polifenoles
19.
Science ; 300(5628): 2089-91, 2003 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-12829782

RESUMEN

Bixin, also known as annatto, is a seed-specific pigment widely used in foods and cosmetics since pre-Columbian times. We show that three genes from Bixa orellana, native to tropical America, govern bixin biosynthesis. These genes code for lycopene cleavage dioxygenase, bixin aldehyde dehydrogenase, and norbixin carboxyl methyltransferase, which catalyze the sequential conversion of lycopene into bixin. Introduction of these three genes in Escherichia coli engineered to produce lycopene induced bixin synthesis, thus expanding the supply of this economically important plant product.


Asunto(s)
Bixaceae/genética , Bixaceae/metabolismo , Carotenoides/biosíntesis , Aldehído Deshidrogenasa/química , Aldehído Deshidrogenasa/genética , Aldehído Deshidrogenasa/metabolismo , Secuencia de Aminoácidos , Carotenoides/metabolismo , Catálisis , Clonación Molecular , ADN Complementario , Escherichia coli/genética , Escherichia coli/metabolismo , Biblioteca de Genes , Genes de Plantas , Licopeno , Metiltransferasas/química , Metiltransferasas/genética , Metiltransferasas/metabolismo , Datos de Secuencia Molecular , Oxigenasas/genética , Oxigenasas/metabolismo , Proteínas Recombinantes/metabolismo , Semillas/genética , Transformación Bacteriana
20.
Acta Cient Venez ; 53(3): 171-5, 2002.
Artículo en Español | MEDLINE | ID: mdl-12658865

RESUMEN

A series of buds of increasing maturity were individually sampled in order to examine cytological events of annatto (Bixa orellana L.), genotype Portuguesa. They were fixed in Carnoy II at 12:30 am, time of the highest rate of meiotic division. Three stain solutions were attempted. In the microspores mother cells, the use of acetic orcein 1% resulted in a good nucleus coloration and sharpness. In contrast, a well chromosome resolution was achieved with the application of propionic carmin 2%. The pollen grain mother cells (n = 8 chromosomes) at metaphase I were found in floral buds of 0.5 to 0.6 cm long; tetrad stage in buds of 0.6 to 0.7 cm long, uninucleate stage of microspores in buds of 0.7 to 0.8 cm long and the binucleate stage (pollen) in buds longer than 0.8 cm. Microphotographies showing the sequence of meiotic division (microsporogenesis) and subsequent mitosis to originate pollen grains were included.


Asunto(s)
Bixaceae/crecimiento & desarrollo , Cromosomas de las Plantas/fisiología , Polen/crecimiento & desarrollo , Bixaceae/citología , Bixaceae/genética , División Celular/genética , División Celular/fisiología , Pintura Cromosómica , Polen/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...